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Abstract

Over the years, datasets and benchmarks have proven

their fundamental importance in computer vision research,

enabling targeted progress and objective comparisons in

many fields. At the same time, legacy datasets may impend

the evolution of a field due to saturated algorithm perfor-

mance and the lack of contemporary, high quality data. In

this work we present a new benchmark dataset and evalu-

ation methodology for the area of video object segmenta-

tion. The dataset, named DAVIS (Densely Annotated VIdeo

Segmentation), consists of fifty high quality, Full HD video

sequences, spanning multiple occurrences of common video

object segmentation challenges such as occlusions, motion-

blur and appearance changes. Each video is accompanied

by densely annotated, pixel-accurate and per-frame ground

truth segmentation. In addition, we provide a comprehen-

sive analysis of several state-of-the-art segmentation ap-

proaches using three complementary metrics that measure

the spatial extent of the segmentation, the accuracy of the

silhouette contours and the temporal coherence. The results

uncover strengths and weaknesses of current approaches,

opening up promising directions for future works.

1. Introduction

Video object segmentation is a binary labeling prob-

lem aiming to separate foreground object(s) from the back-

ground region of a video. A pixel-accurate, spatio-temporal

bipartition of the video is instrumental to several applica-

tions including, among others, action recognition, object

tracking, video summarization, and rotoscoping for video

editing. Despite remarkable progress in recent years, video

object segmentation still remains a challenging problem and

most existing approaches still exhibit too severe limitations

in terms of quality and efficiency to be applicable in practi-

cal applications, e.g. for processing large datasets, or video

post-production and editing in the visual effects industry.

What is most striking is the performance gap among

state-of-the-art video object segmentation algorithms and

closely related methods focusing on image segmentation

Figure 1: Sample sequences from our dataset, with ground

truth segmentation masks overlayed. Please refer to the sup-

plemental material for the complete dataset.

and object recognition, which have experienced remark-

able progress in the recent years. A key factor boot-

strapping this progress has been the availability of large

scale datasets and benchmarks [12, 26, 29, 42]. This is in

stark contrast to video object segmentation. While sev-

eral datasets exists for various different video segmentation

tasks [1, 4, 5, 15, 20, 21, 25, 38, 41, 44, 46, 47], none of them

targets the specific task of video object segmentation.

To date, the most widely adopted dataset is that of [47],

which, however, was originally proposed for joint segmen-

tation and tracking and only contains six low-resolution

video sequences, which are not representative anymore for

the image quality and resolution encountered in today’s

video processing applications. As a consequence, evalua-

tions performed on such datasets are likely to be overfit-

ted, without reliable indicators regarding the differences be-

tween individual video segmentation approaches, and the

real performance on unseen, more contemporary data be-

comes difficult to determine [6]. Despite the effort of some

authors to augment their evaluation with additional datasets,

a standardized and widely adopted evaluation methodology

for video object segmentation does not yet exists.

To this end, we introduce a new dataset specifically de-

signed for the task of video object segmentation. The
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dataset, which will be made publicly available, contains

fifty densely and professionally annotated high-resolution

Full HD video sequences, with pixel-accurate ground-truth

data provided for every video frame. The sequences have

been carefully captured to cover multiple instances of ma-

jor challenges typically faced in video object segmentation.

The dataset is accompanied with a comprehensive evalua-

tion of several state-of-the-art approaches [5, 7, 13, 14, 18,

21, 24, 33, 35, 40, 43, 45]. To evaluate the performance we

employ three complementary metrics measuring the spa-

tial accuracy of the segmentation, the quality of the sil-

houette and its temporal coherence. Furthermore, we anno-

tated each video with specific attributes such as occlusions,

fast-motion, non-linear deformation and motion-blur. Cor-

related with the performance of the tested approaches, these

attributes enable a deeper understanding of the results and

point towards promising avenues for future research. The

components described above represent a complete bench-

mark suite, providing researchers with the necessary tools

to facilitate the evaluation of their methods and advance the

field of video object segmentation.

2. Related Works

In this section we provide an overview of datasets de-

signed for different video segmentation tasks, followed by

a survey of techniques targeting video object segmentation.

2.1. Datasets

There exist several datasets for video segmentation, but

none of them has been specifically designed for video ob-

ject segmentation, the task of pixel-accurate separation of

foreground object(s) from the background regions.

The Freiburg-Berkeley Motion Segmentation dataset [5]

MoSeg is a popular dataset for motion segmentation, i.e.

clustering regions with similar motion. Despite being re-

cently adopted by works focusing on video object segmen-

tation [35, 45], the dataset does not fulfill several important

requirements. Most of the videos have low spatial resolu-

tion, segmentation is only provided on a sparse subset of the

frames, and the content is not sufficiently diverse to provide

a balanced distribution of challenging situations such as fast

motion and occlusions.

The Berkeley Video Segmentation Dataset (BVSD) [44]

comprises a total 100, higher resolution sequences. It was

originally meant to evaluate occlusions boundary detection

and later extended to over- and motion-segmentation tasks

(VSB100 [19]). However, several sequences do not contain

a clear object. Furthermore, the ground-truth, available only

for a subset of the frames, is fragmented, with most of the

objects being covered by multiple manually annotated, dis-

joint segments, and therefore this dataset is not well suited

for evaluating video object segmentation.

SegTrack [47] is a small dataset composed of 6 densely

annotated videos of humans and animals. It is designed to

be challenging with respect to background-foreground color

similarity, fast motion and complex shape deformation. Al-

though it has been extensively used by several approaches,

its content does not sufficiently span the variety of chal-

lenges encountered in realistic video object segmentation

applications. Furthermore, the image quality is not anymore

representative of modern consumer devices, and due to the

limited number of available video sequences, progress on

this dataset plateaued. In [25] this dataset was extended

with 8 additional sequences. While this is certainly an im-

provement over the predecessor, it still suffers of the same

limitations. We refer the reader to the supplemental mate-

rial for a comprehensive summary of the properties of the

aforementioned datasets, including ours.

Other datasets exist, but they are mostly provided to sup-

port specific findings and thus are either limited in terms of

total number of frames, [8,21,25,47], or do not exhibit a suf-

ficient variety in terms of content [1, 4, 5, 15, 17, 20, 41, 46].

Others cover a broader range of content but do not provide

enough ground-truth data for an accurate evaluation of the

segmentation [21, 38]. Video datasets designed to bench-

mark tracking algorithms typically focus on surveillance

scenarios with static cameras [9, 16, 32], and usually con-

tain multiple instances of similar objects [50] (e.g. a crowd

of people), and annotation is typically provided only in

the form of axis-aligned bounding boxes, instead of pixel-

accurate segmentation masks necessary to accurately eval-

uate video object segmentation. Importantly, none of the

aforementioned methods includes contemporary high reso-

lution videos, which is an absolute necessity to realistically

evaluate the actual practical utility of such algorithms.

2.2. Algorithms

We categorize the body of literature related to video ob-

ject segmentation based on the level of supervision required.

Unsupervised approaches have historically targeted

over-segmentation [21, 51] or motion segmentation [5,

18] and only recently automatic methods for foreground-

background separation have been proposed [13, 25, 33, 43,

45, 52]. These methods extend the concept of salient object

detection [34] to videos. They do not require any manual

annotation and do not assume any prior information on the

object to be segmented. Typically they are based on the

assumption that object motion is dissimilar from the sur-

roundings. Some of these methods generate several ranked

segmentation hypotheses [24]. While they are well suited

for parsing large scale databases, they are bound to their

underlying assumption and fail in cases it does not hold.

Semi-supervised video object segmentation methods

propagate a sparse manual labeling, generally given in the

form of one or more annotated frames, to the entire video
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ID Description

BC Background Clutter. The back- and foreground regions around

the object boundaries have similar colors (χ2 over histograms).

DEF Deformation. Object undergoes complex, non-rigid deformations.

MB Motion Blur. Object has fuzzy boundaries due to fast motion.

FM Fast-Motion. The average, per-frame object motion, computed

as centroids Euclidean distance, is larger than τfm = 20 pixels.

LR Low Resolution. The ratio between the average object

bounding-box area and the image area is smaller than tlr = 0.1.

OCC Occlusion. Object becomes partially or fully occluded.

OV Out-of-view. Object is partially clipped by the image boundaries.

SV Scale-Variation. The area ratio among any pair of bounding-

boxes enclosing the target object is smaller than τsv = 0.5.

AC Appearance Change. Noticeable appearance variation, due

to illumination changes and relative camera-object rotation.

EA Edge Ambiguity. Unreliable edge detection. The average ground-

truth edge probability (using [11]) is smaller than τe = 0.5.

CS Camera-Shake. Footage displays non-negligible vibrations.

HO Heterogeneus Object. Object regions have distinct colors.

IO Interacting Objects. The target object is an ensemble of multiple,

spatially-connected objects (e.g. mother with stroller).

DB Dynamic Background. Background regions move or deform.

SC Shape Complexity. The object has complex boundaries such as

thin parts and holes.

Table 1: List of video attributes and corresponding descrip-

tion. We extend the annotations of [50] (top) with a comple-

mentary set of attributes relevant to video object segmenta-

tion (bottom). We refer the reader to the supplementary ma-

terial for the list of attributes for each in video in the dataset,

and corresponding visual examples.

sequence. While being different from each other, they often

solve an optimization problem with an energy defined over

a graph structure [1, 40, 48]. To model long-range spatio-

temporal connections some approaches use fully connected

graphs [35], higher-order potentials [22]. The recent work

of Märki et al. [31] efficiently approximates non-local con-

nections minimizing the graph energy in bilateral space.

Supervised approaches assume manual annotation to be

repeatedly added during the segmentation process, with a

human correcting the algorithm results in an iterative fash-

ion [2, 14, 49, 53]. These methods generally operate on-

line, forward processing frames to avoid overriding of pre-

vious manual corrections. They guarantee high segmenta-

tion quality at the price of time-consuming human supervi-

sion, hence they are suited only for specific scenarios such

as video post-production.

We evaluate a large set of the state-of-the-art approaches

on our proposed dataset, providing new insights and several

pointers to areas for future research.

3. Dataset Description

In this section we describe our new dataset DAVIS

(Densely Annotated VIdeo Segmentation) specifically de-

signed for the task of video object segmentation. Exam-

ple frames of some of the sequences are shown in Figure 1.

Based on experiences with existing datasets we first identify

four key aspects we adhere to, in order create a balanced and

comprehensive dataset.

Data Amount and Quality. A sufficiently large amount

of data is necessary to ensure content diversity and to pro-

vide a uniformly distributed set of challenges. Furthermore,

having enough data is crucial to avoid over-fitting and to

delay performance saturation, hence guaranteeing a longer

lifespan of the dataset [6]. The quality of the data also

plays a crucial role, as it should be representative of the

current state of technology. To this end, DAVIS comprises

a total of 50 sequences, 3455 annotated frames, all cap-

tured at 24fps and Full HD 1080p spatial resolution. Due

to the computational complexity being a major bottleneck

in video processing, the sequences have a short temporal

extent (about 2-4 seconds), but include all major challenges

typically found in longer video sequences, see Table 1.

Experimental Validation. For each video frame, we

provide pixel-accurate, manually created segmentation in

the form of a binary mask. While we subdivide DAVIS

into training- and a test-set to provide guidelines for future

works, in our evaluation, we do not make use of the parti-

tion, and instead consider the dataset as a whole, since most

of the evaluated approaches are not trained and a grid-search

estimation of the optimal parameters would be infeasible

due to the involved computational complexity.

Object Presence. Intuitively each sequence should con-

tain at least one target foreground-object to be separated

from the background regions. The clips in DAVIS contain

either one single object or two spatially connected objects.

We choose not to have multiple distinct objects with signif-

icant motion in order to be able to fairly compare segmen-

tation approaches operating on individual objects against

those that jointly segment multiple objects. Moreover, hav-

ing a single object per sequence disambiguates the detection

performed by methods which are fully automatic. A similar

design choice made in [27] has been successfully steering

research in salient object detection from its beginnings to

the current state-of-the-art. To ensure sufficient content di-

versity, which is necessary to comprehensively assess the

performance of different algorithms, the dataset spans four

evenly distributed classes (humans, animals, vehicles, ob-

jects) and several actions.

Unconstrained Video Challenges. To enable a deeper

analysis and understanding of the performance of an al-

gorithm, it is fundamentally important to identify the key

factors and circumstances which might have influenced

it. Thus, inspired by [50] we define an extensive set of

video attributes representing specific situations, such as

fast-motion, occlusion and cluttered background, that typ-

ically pose challenges to video segmentation algorithms.

Attributes are summarized in Table 1. They are not exclu-
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Figure 2: Left: Attributes distribution over the dataset.

Each bin indicates the number of occurrences. Right: Mu-

tual dependencies among attributes. The presence of a link

indicates high probability of an attribute to appear in a se-

quence, if the one on the other end is also present.

sive, therefore a sequence can be annotated with multiple

attributes. Their distribution over the dataset, i.e. number of

occurrences, and their pairwise dependencies are shown in

Figure 2. The annotations enable us to decouple the anal-

ysis of the performance into different groups with domi-

nant characteristics (e.g. occlusion), yielding a better un-

derstanding of each methods’ strengths and weaknesses.

4. Experimental Validation

In order to judge the quality of a segmentation, the

choice of a suitable metric is largely dependent on the end

goal of the final application [10]. Intuitively, when video

segmentation is used primarily a classifier within a larger

processing pipeline, e.g. for parsing large scale datasets, it

makes sense to seek the lowest amount of mislabeled pixels.

On the other hand, in video editing applications the accu-

racy of the contours and their temporal stability is of high-

est importance, as these properties usually require the most

painstaking and time-consuming manual input. In order to

exhaustively cover the aforementioned aspects we evaluate

the video segmentation results using three complementary

error metrics. We describe the metrics in Section 4.1 and

we empirically validate their complementary properties on

the proposed dataset in Section 4.2.

4.1. Metrics Selection

In a supervised evaluation framework, given a ground-

truth mask G on a particular frame and an output segmen-

tation M , any evaluation measure ultimately has to answer

the question how well M fits G. As justified in [37], for im-

ages one can use two complementary points of view, region-

based and contour-based measures. As videos extends the

dimensionality of still images to time, the temporal stabil-

ity of the results must also be considered. Our evaluation is

therefore based on the following measures.

Region Similarity J . To measure the region-based seg-

mentation similarity, i.e. the number of mislabeled pixels,

we employ the Jaccard index J defined as the intersection-

over-union of the estimated segmentation and the ground-

truth mask. The Jaccard index has been widely adopted

since its first appearance in PASCAL VOC2008 [12], as it

provides intuitive, scale-invariant information on the num-

ber of mislabeled pixels. Given an output segmentation M
and the corresponding ground-truth mask G it is defined as

J = |M∩G|
|M∪G| .

Contour Accuracy F . From a contour-based perspec-

tive, one can interpret M as a set of closed contours c(M)
delimiting the spatial extent of the mask. Therefore, one

can compute the contour-based precision and recall Pc and

Rc between the contour points of c(M) and c(G), via a

bipartite graph matching in order to be robust to small in-

accuracies, as proposed in [28]. We consider the so called

F-measure F as a good trade-off between the two, defined

as F = 2PcRc

Pc+Rc

. For efficiency, in our experiments, we ap-

proximate the bipartite matching via morphology operators.

Temporal stability T . Intuitively, J measures how well

the pixels of the two masks match, while F measures the

accuracy of the contours. However, temporal stability of

the results is a relevant aspect in video object segmentation-

since the evolution of object shapes is an important cue for

recognition and jittery, unstable boundaries are unaccept-

able in video editing applications. Therefore, we addition-

ally introduce a temporal stability measure which penalizes

such undesired effects.

The key challenge is to distinguish the acceptable mo-

tion of the objects from the undesired instability and jitter.

To do so, we estimate the deformation needed to transform

the mask at one frame to the next one. Intuitively, if the

transformation is smooth and precise, the result can be con-

sidered stable.

Formally, we transform mask Mt of frame t into poly-

gons representing its contours P (Mt). We then describe

each point pit ∈ P (Mt) using the Shape Context Descriptor

(SCD) [3]. Next, we pose the matching as a Dynamic Time

Warping (DTW) [39] problem, were we look for the match-

ing between pit and pjt+1 that minimizes the SCD distances

between the matched points while preserving the order in

which the points are present in the shapes.

The resulting mean cost per matched point is used as the

measure of temporal stability T . Intuitively, the matching

will compensate motion and small deformations, but it will

not compensate the oscillations and inaccuracies of the con-

tours, which is what we want to measure. Occlusions and

very strong deformations would be misinterpreted as con-

tour instability, so we compute the measure on a subset of

sequences without such effects.

4.2. Metrics Validation

To verify that the use of these measures produces mean-

ingful results on our dataset, we compute the pairwise cor-

relation between the region similarity J and the contour
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Figure 3: Correlation between the proposed metrics. Mark-

ers correspond to video frames. Colors encode membership

to a specific video sequence. The contour accuracy measure

F exhibits a slight linear dependency with respect to the re-

gion similarity J (left), while it appears uncorrelated to the

temporal stability T (right).

accuracy F and between F and the temporal stability mea-

sure T . The degree of correlation is visualized in Figure 3.

As can be expected, there is a tendency towards linear cor-

relation between J and F (Figure 3, left), which can be

explained by the observation that higher quality segmen-

tations usually also result in more accurate contours. We

note, however, that the level of independence is enough to

justify the use of both measures. To get a qualitative idea of

the differences between the two measures, Figure 4 shows

two results of discrepant judgments between J and F . The

temporal stability measure T and the contour accuracy F
instead are nearly uncorrelated (Figure 3, right), which is

also expected since temporal instability does not necessar-

ily impact the per-frame performance.

Figure 4: Discrepancy between metrics. Ground truth in red

and an example segmentation result in green. On the left,

the result is penalized by J because in terms of number of

pixels there is a significant amount of false negatives (head

and foot), while with respect to the boundary measure F
the missed percentage is lower. On the right the response

of both measures is switched. The discrepancy in terms of

pixels is low because the erroneous area is small, but the

boundaries are highly inaccurate.

5. Evaluated Algorithms

We evaluate a total of twelve video segmentation al-

gorithms, which we selected based on their demonstrated

state-of-the-art performance and source code availability,

and two techniques commonly used for preprocessing. The

source code was either publicly available or it was shared

by the authors upon request.

Within the unsupervised category we evaluate the per-

formance of NLC [13], FST [33], SAL [43], TRC [18],

MSG [5] and CVOS [45]. The three latter approaches gen-

erates multiple segments per-frame, and therefore, as sug-

gested in [5], we solve the bipartite graph matching that

maximizes region similarity in terms of J to select the most

similar to the target object. Among the semi-supervised ap-

proaches, SEA [40], JMP [14], TSP [7] and HVS [21] are

initialized using the first-frame. HVS is meant for hierarchi-

cal over-segmentation, hence we search the hierarchy level

and the corresponding segments that maximizes J of the

first frame, keeping the annotation fixed throughout the en-

tire video. FCP [35] uses a pair of annotated object propos-

als to initialize the classifiers. In our evaluation KEY [24]

is deemed to be semi-supervised since we override their ab-

jectness score and instead use the ground-truth to select the

optimal hypotheses which is then refined solving a series of

spatio-temporal graph-cuts.

The selected algorithms span the categories devised in

Section 2 based on the level of supervision. However, in-

teractive approaches with manual feedback could theoreti-

cally yield optimal results, and are not directly comparable

with un- and semi-supervised approaches, since the num-

ber of user edits, e.g. strokes, should be also taken into ac-

count. Therefore we cast JMP [14] into a semi-supervised

method that propagates masks to consecutive frames similar

to SEA [40]. We reduce the number of categories in Table 2

and Table 3 accordingly.

Additionally we evaluate the performance of a salient

object detector and the performance of an object proposal

generator, as their output is a useful indicator with respect

to the various video segmentation algorithms that are built

upon them. We extract per-frame saliency from CIE-Lab

images (SF-LAB, [34]) and from inter-frame motion (SF-

MOT, [34]), while we use ground-truth to select the hy-

potheses of the object proposal generator (MCG, [36]) max-

imizing the per-frame Jaccard region similarity J .

6. Quantitative Evaluation

In this section we report the results of the fifteen evalu-

ated approaches. We first provide different statistics eval-

uated for each of the three error measures (regions, con-

tours, temporal), and then discuss evaluation results at the

attribute level (e.g., performance with respect to appearance

changes).

For each of the methods we kept the default parame-

ters fixed throughout the entire dataset. Despite a consider-

able effort to speed-up the computation (parallelizing pre-

processing steps such as motion estimation or extraction
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Preprocessing Unsupervised Semi-Supervised

Measure MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP

Mean M ↑ 0.724 0.173 0.532 0.641 0.514 0.501 0.543 0.569 0.426 0.575 0.358 0.556 0.596 0.607 0.631

J Recall O ↑ 0.912 0.075 0.672 0.731 0.581 0.560 0.636 0.671 0.386 0.652 0.388 0.606 0.698 0.693 0.778

Decay D ↓ 0.026 -0.020 0.050 0.086 0.127 0.050 0.028 0.075 0.084 0.044 0.385 0.355 0.197 0.372 0.031

Mean M ↑ 0.654 0.218 0.452 0.593 0.490 0.478 0.525 0.503 0.383 0.536 0.346 0.533 0.576 0.586 0.546

F Recall O ↑ 0.781 0.052 0.440 0.658 0.578 0.519 0.613 0.534 0.264 0.579 0.329 0.559 0.712 0.656 0.604

Decay D ↓ 0.046 -0.016 0.052 0.086 0.138 0.066 0.057 0.079 0.072 0.065 0.388 0.339 0.202 0.373 0.039

T Mean M ↓ 0.652 0.758 0.637 0.356 0.243 0.327 0.250 0.190 0.600 0.276 0.329 0.137 0.296 0.131 0.285

Table 2: Overall results of region similarity (J ), contour accuracy (F) and temporal (in-)stability (T ) for each of the tested

algorithms. For rows with an upward pointing arrow higher numbers are better (e.g., mean), and vice versa for rows with

downward pointing arrows (e.g., decay, instability).

of boundary preserving regions) and to reduce the mem-

ory footprint (caching intermediate steps), several meth-

ods based on global optimization routines cannot be eas-

ily accelerated. Therefore, in order to be able to evaluate

all methods with respect to each other, we were forced to

down-sample the videos to 480p resolution. Due to the

enormous processing power required, we performed exper-

iments on different machines and partly on a cluster with

thousands of nodes and heterogeneous CPU cores. Indica-

tive runtimes are reported in the supplementary material.

The evaluation scripts, the input data, and the output re-

sults are made publicly available1.

We exclude from the evaluation the first frame, which

is used as ground-truth by semi-supervised methods, and

the last frame which is not processed by some of the ap-

proaches. The overall results and considerations are re-

ported in Section 6.1 and summarized in Table 2, while the

attributes-based evaluation is discussed in Section 6.2 and

summarized in Table 3.

6.1. Error Measure Statistics

For a given error measure C we consider three differ-

ent statistics. Let R = {Si} be the dataset of video se-

quences Si and let C̄(Si) be the error measure average

on Si. The mean is the average dataset error defined as

MC(R) = 1
|R|

∑
S∈R C̄(Si). The decay quantifies the per-

formance loss (or gain) over time. Let Qi = {Q1
i , .., Q

4
i }

be a partition of Si in quartiles, we define the decay as

DC(R) = 1
|R|

∑
Qi∈R C̄(Q1

i ) − C̄(Q4
i ). The object recall

measures the fraction of sequences scoring higher than a

threshold, defined as OC(R) = 1
|R|

∑
S∈R ✶C̄(Si)>τ , with

τ = 0.5 in our experiments.

The region-based evaluation for all methods is summa-

rized in Table 2. The best performing approach in terms of

mean intersection-over-union is NLC [13] (MJ = 0.641),

closely followed by FCP [35] (MJ = 0.631). However,

the latter has better object recall OJ and less decay DJ . We

report that, at the time of submission, our concurrent work

1https://github.com/fperazzi/davis

BVS [31] scored MJ = 0.665, therefore being the best

performer in terms of region similarity, with the advantage

of having the parameters tuned on this specific dataset.

With the exception of FCP [35], which solves a global

optimization problem over a fully connected graph, the

semi-supervised approaches TSP [7], SEA [40], HVS [21]

and JMP [14] propagate the initial manual segmentation it-

eratively to consecutive frames and thus exhibit temporal

performance decay as reflected in the results. To alleviate

this problem, propagating using bigger steps and interpo-

lating the results in-between can reduce the drift and im-

prove the overall results [14]. TRC [18] and MSG [5] be-

long to a class of methods that uses motion segmentation

as a prior, but the resulting over-segmentation of the object

reflects negatively on the average performance. CVOS [45]

uses occlusion boundaries, but still encounters similar is-

sues. Differently from TRC and MSG, CVOS performs on-

line segmentation. It scales better to longer sequences in

terms of efficiency but experiences higher decay.

Aiming at detecting per-frame indicators of potential

foreground object locations, KEY [24], SAL [43], and FST

[33] try to determine prior information sparsely distributed

over the video sequence. The prior is consolidated enforc-

ing spatio-temporal coherence and stability by minimizing

an energy function over a locally connected graph. While

the local connectivity enables propagation of the segmen-

tation similar to those of the semi-supervised approaches

listed above, these methods suffer less decay as annotations

are available at multiple different time frames.

Within the preprocessing category, the oracle MCG [36]

is an informative upper-bound for methods seeking the best

possible proposal per-frame. It has the highest region-based

performance J and superior object recall MJ . The perfor-

mance of MCG, also supported by the good performance

of FCP and KEY that use concurrent object proposal gen-

erators, indicates that this could be a promising direction

for more future research. As expected, in video sequences

motion is a stronger low-level cue for object presence than

color. Consequently salient motion detection SF-MOT [34]

shows a significantly better performance than SF-LAB.
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Unsupervised Semi-Supervised

Attr NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP

AC 0.54 +0.13 0.42 +0.12 0.37 +0.17 0.48 +0.08 0.42 +0.19 0.33 +0.12 0.55 +0.04 0.17 +0.23 0.46 +0.12 0.42 +0.23 0.58 +0.03 0.51 +0.16

DB 0.53 +0.15 0.37 +0.18 0.39 +0.15 0.43 +0.15 0.52 +0.07 0.35 +0.10 0.53 +0.06 0.40 -0.06 0.58 -0.03 0.60 -0.01 0.60 +0.01 0.62 +0.01

FM 0.64 +0.00 0.37 +0.24 0.41 +0.16 0.46 +0.14 0.50 +0.12 0.35 +0.13 0.50 +0.12 0.18 +0.31 0.40 +0.28 0.42 +0.31 0.50 +0.18 0.55 +0.13

MB 0.61 +0.04 0.36 +0.23 0.32 +0.27 0.35 +0.29 0.51 +0.08 0.33 +0.15 0.48 +0.14 0.15 +0.32 0.39 +0.24 0.44 +0.24 0.51 +0.15 0.53 +0.15

OCC 0.70 -0.09 0.43 +0.13 0.44 +0.10 0.48 +0.10 0.52 +0.08 0.44 -0.02 0.53 +0.07 0.27 +0.14 0.47 +0.13 0.53 +0.11 0.47 +0.21 0.59 +0.07

Table 3: Attribute-based aggregate performance. For each method, the respective left column corresponds to the average

region similarity J over all sequences with that specific attribute (e.g., AC), while the right column indicates the performance

gain (or loss) for that method for the remaining sequences without that respective attribute. Only a subset of the most

informative attributes from Table 1 are shown here. Please refer to the supplemental material for the complete evaluation.

The evaluation clearly shows that both the aggregate and

individual performance of the approaches leave abundant

room for future research. For instance, in [23] it is observed

that a Jaccard index of J ≥ 0.7 seems to be sufficiently

accurate while J ≤ 0.6 already represents a significant de-

partures from the original object shape. The top techniques

evaluated on DAVIS are still closer to the latter.

In terms of contour accuracy the best performing ap-

proaches are NLC and JMP. The former uses a large number

of superpixels per-frame (∼2000) and a discriminative en-

semble of features to represent them. In contrast, JMP ex-

ploits geodesic active contours to refine the object bound-

aries. The motion clusters of TRC and MSG, as well as

the occlusion boundaries of CVOS generate sub-optimal re-

sults along the boundaries. The top ranked methods in terms

of temporal stability are those that propagate segmentation

on consecutive frames (JMP, SEA). As expected those that

are used on a per-frame basis and cannot enforce continuity

over time, such as MCG and SF-(*) generate considerably

higher temporal instability. As a sanity check, we evalu-

ate the temporal stability of the ground truth and we get

T = 0.093, which is lower than any of the sequences.

6.2. Attributes­based Evaluation

As discussed in Section 3 and Table 1 we annotated the

video sequences with attributes each representing a differ-

ent challenging factor. These attributes allow us to identify

groups of videos with a dominant feature e.g., presence of

occlusions, which is key to explaining the algorithms’ per-

formance. However, since multiple attributes are assigned

to each sequence, there might exists hidden dependencies

among them which could potentially affect an objective

analysis of the results. Therefore, we first conduct a statis-

tical analysis to establish these relationship, and then detail

the corresponding evaluation results.

Attributes Dependencies. We consider the presence or

absence of each attribute in a video sequence to be repre-

sented as a binary random variable, the dependencies be-

tween which can be modelled by a pairwise Markov ran-

dom field (MRF) defined on a graph G with vertex set

V ∈ {1, . . . , 16} and (unknown) edge set E. The absence

of an edge between two attributes denotes that they are in-

dependent conditioned on the remaining attributes. Given

a collection of n = 50 binary vectors denoting the pres-

ence of attributes in each video sequence, we estimate E
via ℓ1 penalized logistic regression. To ensure robustness

in the estimated graph we employ stability selection [30].

Briefly, this amounts to performing the above procedure on

n/2-sized subsamples of the data multiple times and com-

puting the proportion of times each edge is selected. Setting

an appropriate threshold on this selection probability allows

us to control the number of wrongly estimated edges ac-

cording to Theorem 1 in [30]. For example, for a threshold

value of 0.6 and choosing a value of λ which on average

selects neighbourhoods of size 4, the number of wrongly

selected edges is at most 4 (out of 162 = 256 possible

edges). The estimated dependencies are visualized in Fig-

ure 2 (right). As expected there is a mutual dependency

between attributes such as fast-mostion (FM) and motion-

blur (MB), or interacting-object (IO) and shape-complexity

(SC). We refer the reader to the supplementary material for

further details.

Results. In Table 3 we report the performance on subsets

of the datasets characterized by a particular attribute. Due to

space limitations we reduce the analysis in the paper to the

most informative and recurrent attributes. Furthers details

can be found in the supplementary material.

Appearance changes (AC) poses a challenge to several

approaches, in particular for those methods strongly rely-

ing on color appearance similarity such as HVS and TCP.

For example, TSP performance drops almost 50% as a con-

sequence of the Gaussian process it uses to update the ap-

pearance model and therefore not being robust enough to

strong appearance variations. Despite the dense connectiv-

ity of its conditional random field, FCP also experiences a

considerable loss of performance. The reason resides in a

sub-optimal automatic choice of the annotated proposals.

Likely the proposals did have enough variety to span the

entire object appearances causing the classifiers to overfit.

Dynamic background (DB) scenes, e.g. flowing water,
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represent a major difficulty to the class of unsupervised

methods, such as NLC and SAL, which adopt distinctive

motion saliency as the underlying assumption to predict

the object location. Interestingly the assumption of a com-

pletely closed motion boundary curve coinciding with the

object contours can robustly accommodate background de-

formations (FST). Finally, MSG and TRC experience a

considerable performance degradation as the motion clus-

ters they rely on [5] are constructed from dissimilarities of

point-trajectories, under the assumption that translational

models are a good approximation for nearby points, which

is not true on deforming image regions.

Fast motion (FM) is a problem for any of the algorithms

exploiting motion information as the condition is a ma-

jor challenge to reliable optical-flow computation. Note

that there is a strong dependency between fast motion and

motion-blur (MB) (Figure 2, right), yielding fuzzy object

boundaries almost impossible to separate from the back-

ground region. Methods such as TRC and MSG use point-

tracks for increased robustness towards fast motion, but are

still susceptible with respect to motion-blur due to the sen-

sitivity of the underlying variational approach used for den-

sification of the results. NLC is the only method which

has none or negligible loss of performance in both circum-

stances, possibly because the saliency computation is still

reliable on a subset of the frames, and their random-walk

matrix being non-locally connected is robust to fast motion.

Occlusions (OCC) being one of the well known chal-

lenges in video segmentation, only a small subset of the

algorithms, which propagate sequentially manually anno-

tated frames such as SEA and JMP, struggle with this type

of situation. As expected, methods that exploit large range

connectivity such as NLC, FCP and KEY are quite robust

to these challenges.

7. Conclusion

To the best of our knowledge, this work represents the

currently largest scale performance evaluation of video ob-

ject segmentation algorithms. One of course has to consider

that the evaluated approaches have been developed using

different amounts and types of input data and ground-truth,

or were partially even designed for different problems and

only later adapted to the task of video object segmentation.

However, the primary aim of our evaluation is not to deter-

mine a winner, but to provide researchers with high-quality,

contemporary data, a solid standardized evaluation proce-

dure, and valuable comparisons with the current state-of-

the-art. We hope that the public availability of this dataset

and the identified areas for potential future works will moti-

vate even more interest in such an active and fundamentally

important field for video processing.

As any dataset, also DAVIS will have a limited life-span.

Therefore we welcome external contributions to extend it,

generalizing it to other segmentation tasks such as over-

segmentation, or to other applications such as video alpha

matting, semantic video segmentation, video retrieval, and

action recognition.

Currently, running time efficiency and memory require-

ments are a major bottleneck for the usability of several

video segmentation algorithms. In our experiments we

observed that a substantial amount of time is spent pre-

processing images to extract boundary preserving regions,

object proposals and motion estimates. We encourage

future research to carefully select those components bear-

ing in mind they could compromise the practical utility

of their work. Efficient algorithms will be able to take

advantage of the Full HD videos and accurate segmentation

masks made available with this dataset. Leveraging high

resolution might not produce better results in terms of

region-similarity, but it is essential to improve the segmen-

tation of complex object contours and tiny object region.
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[23] P. Krähenbühl and V. Koltun. Geodesic object proposals. In

ECCV, 2014. 7

[24] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In Proc. ICCV, 2011. 2, 5, 6

[25] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

ICCV, 2013. 1, 2

[26] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-

mon objects in context. In ECCV, 2014. 1

[27] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and

H. Shum. Learning to detect a salient object. TPAMI, 33(2),

2011. 3

[28] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-

ural image boundaries using local brightness, color, and tex-

ture cues. TPAMI, 26(5), 2004. 4

[29] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 1
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